Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Environ Health Perspect ; 132(4): 45001, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38592230

RESUMO

BACKGROUND: The European Food Safety Authority (EFSA) recommended lowering their estimated tolerable daily intake (TDI) for bisphenol A (BPA) 20,000-fold to 0.2 ng/kg body weight (BW)/day. BPA is an extensively studied high production volume endocrine disrupting chemical (EDC) associated with a vast array of diseases. Prior risk assessments of BPA by EFSA as well as the US Food and Drug Administration (FDA) have relied on industry-funded studies conducted under good laboratory practice protocols (GLP) requiring guideline end points and detailed record keeping, while also claiming to examine (but rejecting) thousands of published findings by academic scientists. Guideline protocols initially formalized in the mid-twentieth century are still used by many regulatory agencies. EFSA used a 21st century approach in its reassessment of BPA and conducted a transparent, but time-limited, systematic review that included both guideline and academic research. The German Federal Institute for Risk Assessment (BfR) opposed EFSA's revision of the TDI for BPA. OBJECTIVES: We identify the flaws in the assumptions that the German BfR, as well as the FDA, have used to justify maintaining the TDI for BPA at levels above what a vast amount of academic research shows to cause harm. We argue that regulatory agencies need to incorporate 21st century science into chemical hazard identifications using the CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) nonguideline academic studies in a collaborative government-academic program model. DISCUSSION: We strongly endorse EFSA's revised TDI for BPA and support the European Commission's (EC) apparent acceptance of this updated BPA risk assessment. We discuss challenges to current chemical risk assessment assumptions about EDCs that need to be addressed by regulatory agencies to, in our opinion, become truly protective of public health. Addressing these challenges will hopefully result in BPA, and eventually other structurally similar bisphenols (called regrettable substitutions) for which there are known adverse effects, being eliminated from all food-related and many other uses in the EU and elsewhere. https://doi.org/10.1289/EHP13812.


Assuntos
Compostos Benzidrílicos , Fenóis , Humanos , Inocuidade dos Alimentos , Nível de Efeito Adverso não Observado , Revisões Sistemáticas como Assunto
2.
Front Immunol ; 14: 1263926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854597

RESUMO

Introduction: Type 1 diabetes is characterized by pancreatic islet inflammation and autoimmune-driven pancreatic ß-cell destruction. Interferon-α (IFNα) is a key player in early human type 1 diabetes pathogenesis. IFNα activates the tyrosine kinase 2 (TYK2)-signal transducer and activator of transcription (STAT) pathway, leading to inflammation, HLA class I overexpression, endoplasmic reticulum (ER) stress, and ß-cell apoptosis (in synergy with IL-1ß). As TYK2 inhibition has raised as a potential therapeutic target for the prevention or treatment of type 1 diabetes, we investigated whether the selective TYK2 inhibitor deucravacitinib could protect ß-cells from the effects of IFNα and other proinflammatory cytokines (i.e., IFNγ and IL-1ß). Methods: All experiments were performed in the human EndoC-ßH1 ß-cell line. HLA class I expression, inflammation, and ER stress were evaluated by real-time PCR, immunoblotting, and/or immunofluorescence. Apoptosis was assessed by the DNA-binding dyes Hoechst 33342 and propidium iodide or caspase 3/7 activity. The promoter activity was assessed by luciferase assay. Results: Deucravacitinib prevented IFNα effects, such as STAT1 and STAT2 activation and MHC class I hyperexpression, in a dose-dependent manner without affecting ß-cell survival and function. A comparison between deucravacitinib and two Janus kinase inhibitors, ruxolitinib and baricitinib, showed that deucravacitinib blocked IFNα- but not IFNγ-induced signaling pathway. Deucravacitinib protected ß-cells from the effects of two different combinations of cytokines: IFNα + IL-1ß and IFNγ + IL-1ß. Moreover, this TYK2 inhibitor could partially reduce apoptosis and inflammation in cells pre-treated with IFNα + IL-1ß or IFNγ + IL-1ß. Discussion: Our findings suggest that, by protecting ß-cells against the deleterious effects of proinflammatory cytokines without affecting ß-cell function and survival, deucravacitinib could be repurposed for the prevention or treatment of early type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , TYK2 Quinase , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Citocinas/farmacologia , Interferon-alfa/metabolismo , Inflamação
3.
Environ Int ; 180: 108161, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37758599

RESUMO

Food contact materials (FCMs) and food contact articles are ubiquitous in today's globalized food system. Chemicals migrate from FCMs into foodstuffs, so called food contact chemicals (FCCs), but current regulatory requirements do not sufficiently protect public health from hazardous FCCs because only individual substances used to make FCMs are tested and mostly only for genotoxicity while endocrine disruption and other hazard properties are disregarded. Indeed, FCMs are a known source of a wide range of hazardous chemicals, and they likely contribute to highly prevalent non-communicable diseases. FCMs can also include non-intentionally added substances (NIAS), which often are unknown and therefore not subject to risk assessment. To address these important shortcomings, we outline how the safety of FCMs may be improved by (1) testing the overall migrate, including (unknown) NIAS, of finished food contact articles, and (2) expanding toxicological testing beyond genotoxicity to multiple endpoints associated with non-communicable diseases relevant to human health. To identify mechanistic endpoints for testing, we group chronic health outcomes associated with chemical exposure into Six Clusters of Disease (SCOD) and we propose that finished food contact articles should be tested for their impacts on these SCOD. Research should focus on developing robust, relevant, and sensitive in-vitro assays based on mechanistic information linked to the SCOD, e.g., through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision will improve prevention of chronic diseases that are associated with hazardous chemical exposures, including from FCMs.


Assuntos
Contaminação de Alimentos , Doenças não Transmissíveis , Humanos , Contaminação de Alimentos/análise , Saúde Pública , Embalagem de Alimentos , Alimentos , Substâncias Perigosas/toxicidade
4.
Am J Physiol Endocrinol Metab ; 324(6): E488-E505, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37134142

RESUMO

Plastic pollution breaks a planetary boundary threatening wildlife and humans through its physical and chemical effects. Of the latter, the release of endocrine disrupting chemicals (EDCs) has consequences on the prevalence of human diseases related to the endocrine system. Bisphenols (BPs) and phthalates are two groups of EDCs commonly found in plastics that migrate into the environment and make low-dose human exposure ubiquitous. Here we review epidemiological, animal, and cellular studies linking exposure to BPs and phthalates to altered glucose regulation, with emphasis on the role of pancreatic ß-cells. Epidemiological studies indicate that exposure to BPs and phthalates is associated with diabetes mellitus. Studies in animal models indicate that treatment with doses within the range of human exposure decreases insulin sensitivity and glucose tolerance, induces dyslipidemia, and modifies functional ß-cell mass and serum levels of insulin, leptin, and adiponectin. These studies reveal that disruption of ß-cell physiology by EDCs plays a key role in impairing glucose homeostasis by altering the mechanisms used by ß-cells to adapt to metabolic stress such as chronic nutrient excess. Studies at the cellular level demonstrate that BPs and phthalates modify the same biochemical pathways involved in adaptation to chronic excess fuel. These include changes in insulin biosynthesis and secretion, electrical activity, expression of key genes, and mitochondrial function. The data summarized here indicate that BPs and phthalates are important risk factors for diabetes mellitus and support a global effort to decrease plastic pollution and human exposure to EDCs.


Assuntos
Diabetes Mellitus , Disruptores Endócrinos , Animais , Humanos , Insulina , Fenômenos Fisiológicos Celulares , Glucose
5.
Am J Clin Nutr ; 118(1): 329-337, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230178

RESUMO

On September 7 and 8, 2022, Healthy Environment and Endocrine Disruptors Strategies, an Environmental Health Sciences program, convened a scientific workshop of relevant stakeholders involved in obesity, toxicology, or obesogen research to review the state of the science regarding the role of obesogenic chemicals that might be contributing to the obesity pandemic. The workshop's objectives were to examine the evidence supporting the hypothesis that obesogens contribute to the etiology of human obesity; to discuss opportunities for improved understanding, acceptance, and dissemination of obesogens as contributors to the obesity pandemic; and to consider the need for future research and potential mitigation strategies. This report details the discussions, key areas of agreement, and future opportunities to prevent obesity. The attendees agreed that environmental obesogens are real, significant, and a contributor at some degree to weight gain at the individual level and to the global obesity and metabolic disease pandemic at a societal level; moreover, it is at least, in theory, remediable.


Assuntos
Disruptores Endócrinos , Exposição Ambiental , Humanos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/prevenção & controle , Disruptores Endócrinos/toxicidade , Obesidade/epidemiologia , Obesidade/etiologia , Obesidade/metabolismo , Aumento de Peso , Pandemias
6.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982731

RESUMO

Diabetes is a chronic disease that affects glucose metabolism, either by autoimmune-driven ß-cell loss or by the progressive loss of ß-cell function, due to continued metabolic stresses. Although both α- and ß-cells are exposed to the same stressors, such as proinflammatory cytokines and saturated free fatty acids (e.g., palmitate), only α-cells survive. We previously reported that the abundant expression of BCL-XL, an anti-apoptotic member of the BCL-2 family of proteins, is part of the α-cell defense mechanism against palmitate-induced cell death. Here, we investigated whether BCL-XL overexpression could protect ß-cells against the apoptosis induced by proinflammatory and metabolic insults. For this purpose, BCL-XL was overexpressed in two ß-cell lines-namely, rat insulinoma-derived INS-1E and human insulin-producing EndoC-ßH1 cells-using adenoviral vectors. We observed that the BCL-XL overexpression in INS-1E cells was slightly reduced in intracellular Ca2+ responses and glucose-stimulated insulin secretion, whereas these effects were not observed in the human EndoC-ßH1 cells. In INS-1E cells, BCL-XL overexpression partially decreased cytokine- and palmitate-induced ß-cell apoptosis (around 40% protection). On the other hand, the overexpression of BCL-XL markedly protected EndoC-ßH1 cells against the apoptosis triggered by these insults (>80% protection). Analysis of the expression of endoplasmic reticulum (ER) stress markers suggests that resistance to the cytokine and palmitate conferred by BCL-XL overexpression might be, at least in part, due to the alleviation of ER stress. Altogether, our data indicate that BCL-XL plays a dual role in ß-cells, participating both in cellular processes related to ß-cell physiology and in fostering survival against pro-apoptotic insults.


Assuntos
Citocinas , Células Secretoras de Insulina , Animais , Humanos , Ratos , Apoptose/genética , Linhagem Celular , Citocinas/metabolismo , Células Secretoras de Insulina/metabolismo , Palmitatos/farmacologia , Palmitatos/metabolismo
7.
Ageing Res Rev ; 80: 101674, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35724861

RESUMO

The prevalence of type 2 diabetes (T2D) and impaired glucose tolerance (IGT) increases with ageing. T2D generally results from progressive impairment of the pancreatic islets to adapt ß-cell mass and function in the setting of insulin resistance and increased insulin demand. Several studies have shown an age-related decline in peripheral insulin sensitivity. However, a precise understanding of the pancreatic ß-cell response in ageing is still lacking. In this review, we summarize the age-related alterations, adaptations and/or failures of ß-cells at the molecular, morphological and functional levels in mouse and human. Age-associated alterations include processes such as ß-cell proliferation, apoptosis and cell identity that can influence ß-cell mass. Age-related changes also affect ß-cell function at distinct steps including electrical activity, Ca2+ signaling and insulin secretion, among others. We will consider the potential impact of these alterations and those mediated by senescence pathways on ß-cells and their implications in age-related T2D. Finally, given the great diversity of results in the field of ß-cell ageing, we will discuss the sources of this heterogeneity. A better understanding of ß-cell biology during ageing, particularly at older ages, will improve our insight into the contribution of ß-cells to age-associated T2D and may boost new therapeutic strategies.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células Secretoras de Insulina , Envelhecimento/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos
8.
Int J Mol Sci ; 23(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35563431

RESUMO

There is a need to develop identification tests for Metabolism Disrupting Chemicals (MDCs) with diabetogenic activity. Here we used the human EndoC-ßH1 ß-cell line, the rat ß-cell line INS-1E and dispersed mouse islet cells to assess the effects of endocrine disruptors on cell viability and glucose-stimulated insulin secretion (GSIS). We tested six chemicals at concentrations within human exposure (from 0.1 pM to 1 µM). Bisphenol-A (BPA) and tributyltin (TBT) were used as controls while four other chemicals, namely perfluorooctanoic acid (PFOA), triphenylphosphate (TPP), triclosan (TCS) and dichlorodiphenyldichloroethylene (DDE), were used as "unknowns". Regarding cell viability, BPA and TBT increased cell death as previously observed. Their mode of action involved the activation of estrogen receptors and PPARγ, respectively. ROS production was a consistent key event in BPA-and TBT-treated cells. None of the other MDCs tested modified viability or ROS production. Concerning GSIS, TBT increased insulin secretion while BPA produced no effects. PFOA decreased GSIS, suggesting that this chemical could be a "new" diabetogenic agent. Our results indicate that the EndoC-ßH1 cell line is a suitable human ß-cell model for testing diabetogenic MDCs. Optimization of the test methods proposed here could be incorporated into a set of protocols for the identification of MDCs.


Assuntos
Disruptores Endócrinos , Células Secretoras de Insulina , Animais , Compostos Benzidrílicos/metabolismo , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/metabolismo , Disruptores Endócrinos/toxicidade , Glucose/metabolismo , Humanos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Ratos , Espécies Reativas de Oxigênio/metabolismo
9.
Environ Int ; 164: 107250, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35461094

RESUMO

17ß-estradiol protects pancreatic ß-cells from apoptosis via the estrogen receptors ERα, ERß and GPER. Conversely, the endocrine disruptor bisphenol-A (BPA), which exerts multiple effects in this cell type via the same estrogen receptors, increased basal apoptosis. The molecular-initiated events that trigger these opposite actions have yet to be identified. We demonstrated that combined genetic downregulation and pharmacological blockade of each estrogen receptor increased apoptosis to a different extent. The increase in apoptosis induced by BPA was diminished by the pharmacological blockade or the genetic silencing of GPER, and it was partially reproduced by the GPER agonist G1. BPA and G1-induced apoptosis were abolished upon pharmacological inhibition, silencing of ERα and ERß, or in dispersed islet cells from ERß knockout (BERKO) mice. However, the ERα and ERß agonists PPT and DPN, respectively, had no effect on beta cell viability. To exert their biological actions, ERα and ERß form homodimers and heterodimers. Molecular dynamics simulations together with proximity ligand assays and coimmunoprecipitation experiments indicated that the interaction of BPA with ERα and ERß as well as GPER activation by G1 decreased ERαß heterodimers. We propose that ERαß heterodimers play an antiapoptotic role in beta cells and that BPA- and G1-induced decreases in ERαß heterodimers lead to beta cell apoptosis. Unveiling how different estrogenic chemicals affect the crosstalk among estrogen receptors should help to identify diabetogenic endocrine disruptors.


Assuntos
Disruptores Endócrinos , Células Secretoras de Insulina , Animais , Apoptose , Disruptores Endócrinos/toxicidade , Estradiol , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Estrogênios/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Camundongos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
10.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613676

RESUMO

Metabolism-disrupting chemicals (MDCs) are endocrine disruptors with obesogenic and/or diabetogenic action. There is mounting evidence linking exposure to MDCs to increased susceptibility to diabetes. Despite the important role of glucagon in glucose homeostasis, there is little information on the effects of MDCs on α-cells. Furthermore, there are no methods to identify and test MDCs with the potential to alter α-cell viability and function. Here, we used the mouse α-cell line αTC1-9 to evaluate the effects of MDCs on cell viability and glucagon secretion. We tested six chemicals at concentrations within human exposure (from 0.1 pM to 1 µM): bisphenol-A (BPA), tributyltin (TBT), perfluorooctanoic acid (PFOA), triphenylphosphate (TPP), triclosan (TCS), and dichlorodiphenyldichloroethylene (DDE). Using two different approaches, MTT assay and DNA-binding dyes, we observed that BPA and TBT decreased α-cell viability via a mechanism that depends on the activation of estrogen receptors and PPARγ, respectively. These two chemicals induced ROS production, but barely altered the expression of endoplasmic reticulum (ER) stress markers. Although PFOA, TPP, TCS, and DDE did not alter cell viability nor induced ROS generation or ER stress, all four compounds negatively affected glucagon secretion. Our findings suggest that αTC1-9 cells seem to be an appropriate model to test chemicals with metabolism-disrupting activity and that the improvement of the test methods proposed herein could be incorporated into protocols for the screening of diabetogenic MDCs.


Assuntos
Diabetes Mellitus , Disruptores Endócrinos , Animais , Camundongos , Humanos , Glucagon , Espécies Reativas de Oxigênio , Receptores de Estrogênio/metabolismo , Disruptores Endócrinos/toxicidade , Compostos Benzidrílicos/toxicidade
11.
J Gerontol A Biol Sci Med Sci ; 77(3): 405-415, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34562079

RESUMO

Aging is associated with a decline in peripheral insulin sensitivity and an increased risk of impaired glucose tolerance and type 2 diabetes. During conditions of reduced insulin sensitivity, pancreatic ß cells undergo adaptive responses to increase insulin secretion and maintain euglycemia. However, the existence and nature of ß-cell adaptations and/or alterations during aging are still a matter of debate. In this study, we investigated the effects of aging on ß-cell function from control (3-month-old) and aged (20-month-old) mice. Aged animals were further categorized into 2 groups: high insulin sensitive (aged-HIS) and low insulin sensitive (aged-LIS). Aged-LIS mice were hyperinsulinemic, glucose intolerant, and displayed impaired glucose-stimulated insulin and C-peptide secretion, whereas aged-HIS animals showed characteristics in glucose homeostasis similar to controls. In isolated ß cells, we observed that glucose-induced inhibition of KATP channel activity was reduced with aging, particularly in the aged-LIS group. Glucose-induced islet NAD(P)H production was decreased in aged mice, suggesting impaired mitochondrial function. In contrast, voltage-gated Ca2+ currents were higher in aged-LIS ß cells, and pancreatic islets of both aged groups displayed increased glucose-induced Ca2+ signaling and augmented insulin secretion compared with controls. Morphological analysis of pancreas sections also revealed augmented ß-cell mass with aging, especially in the aged-LIS group, as well as ultrastructural ß-cell changes. Altogether, these findings indicate that aged mouse ß cells compensate for the aging-induced alterations in the stimulus-secretion coupling, particularly by adjusting their Ca2+ influx to ensure insulin secretion. These results also suggest that decreased peripheral insulin sensitivity exacerbates the effects of aging on ß cells.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células Secretoras de Insulina , Ilhotas Pancreáticas , Envelhecimento , Animais , Cálcio , Glucose , Insulina/farmacologia , Ilhotas Pancreáticas/fisiologia , Masculino , Camundongos
13.
Front Physiol ; 12: 638506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912069

RESUMO

Bisphenol-A (BPA) is an endocrine disruptor associated with higher risk of insulin resistance, type 2 diabetes, and cardiovascular diseases especially in susceptible populations. Because malnutrition is a nutritional disorder associated with high cardiovascular risk, we sought to compare the effects of short-term BPA exposure on cardiovascular parameters of healthy and protein-malnourished mice. Postweaned male mice were fed a normo- (control) or low-protein (LP) diet for 8 weeks and then exposed or not to BPA (50 µg kg-1 day-1) for the last 9 days. Systolic blood pressure was higher in BPA or LP groups compared with the control group. However, diastolic blood pressure was enhanced by BPA only in malnourished mice. Left ventricle (LV) end diastolic pressure (EDP), collagen deposition, and CTGF mRNA expression were higher in the control or malnourished mice exposed to BPA than in the respective nonexposed groups. Nevertheless, mice fed LP diet exposed to BPA exhibited higher angiotensinogen and cardiac TGF-ß1 mRNA expression than mice treated with LP or BPA alone. Wall:lumen ratio and cross-sectional area of intramyocardial arteries were higher either in the LP or BPA group compared with the control mice. Taken together, our data suggest that short-term BPA exposure results in LV diastolic dysfunction and fibrosis, and intramyocardial arteries inward remodeling, besides potentiate protein malnutrition-induced hypertension and cardiovascular risk.

14.
Front Immunol ; 12: 634797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664748

RESUMO

Background: Pancreatic islets are exposed to strong pro-apoptotic stimuli: inflammation and hyperglycemia, during the progression of the autoimmune diabetes (T1D). We found that the Cdk11(Cyclin Dependent Kinase 11) is downregulated by inflammation in the T1D prone NOD (non-obese diabetic) mouse model. The aim of this study is to determine the role of CDK11 in the pathogenesis of T1D and to assess the hierarchical relationship between CDK11 and Cyclin D3 in beta cell viability, since Cyclin D3, a natural ligand for CDK11, promotes beta cell viability and fitness in front of glucose. Methods: We studied T1D pathogenesis in NOD mice hemideficient for CDK11 (N-HTZ), and, in N-HTZ deficient for Cyclin D3 (K11HTZ-D3KO), in comparison to their respective controls (N-WT and K11WT-D3KO). Moreover, we exposed pancreatic islets to either pro-inflammatory cytokines in the presence of increasing glucose concentrations, or Thapsigargin, an Endoplasmic Reticulum (ER)-stress inducing agent, and assessed apoptotic events. The expression of key ER-stress markers (Chop, Atf4 and Bip) was also determined. Results: N-HTZ mice were significantly protected against T1D, and NS-HTZ pancreatic islets exhibited an impaired sensitivity to cytokine-induced apoptosis, regardless of glucose concentration. However, thapsigargin-induced apoptosis was not altered. Furthermore, CDK11 hemideficiency did not attenuate the exacerbation of T1D caused by Cyclin D3 deficiency. Conclusions: This study is the first to report that CDK11 is repressed in T1D as a protection mechanism against inflammation-induced apoptosis and suggests that CDK11 lies upstream Cyclin D3 signaling. We unveil the CDK11/Cyclin D3 tandem as a new potential intervention target in T1D.


Assuntos
Apoptose/efeitos dos fármacos , Glicemia/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Citocinas/farmacologia , Diabetes Mellitus Tipo 1/enzimologia , Inflamação/enzimologia , Células Secretoras de Insulina/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/fisiologia , Fator 4 Ativador da Transcrição/metabolismo , Animais , Autoimunidade/efeitos dos fármacos , Ciclina D3/genética , Ciclina D3/metabolismo , Quinases Ciclina-Dependentes/genética , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Inflamação/sangue , Inflamação/genética , Inflamação/patologia , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Tapsigargina/farmacologia , Técnicas de Cultura de Tecidos , Fator de Transcrição CHOP/metabolismo
15.
Chemosphere ; 265: 129051, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33250229

RESUMO

Bisphenol-S (BPS) and Bisphenol-F (BPF) are current Bisphenol-A (BPA) substitutes. Here we used pancreatic ß-cells from wild type (WT) and estrogen receptor ß (ERß) knockout (BERKO) mice to investigate the effects of BPS and BPF on insulin secretion, and the expression and activity of ion channels involved in ß-cell function. BPS or BPF rapidly increased insulin release and diminished ATP-sensitive K+ (KATP) channel activity. Similarly, 48 h treatment with BPS or BPF enhanced insulin release and decreased the expression of several ion channel subunits in ß-cells from WT mice, yet no effects were observed in cells from BERKO mice. PaPE-1, a ligand designed to preferentially trigger extranuclear-initiated ER pathways, mimicked the effects of bisphenols, suggesting the involvement of extranuclear-initiated ERß pathways. Molecular dynamics simulations indicated differences in ERß ligand-binding domain dimer stabilization and solvation free energy among different bisphenols and PaPE-1. Our data suggest a mode of action involving ERß whose activation alters three key cellular events in ß-cell, namely ion channel expression and activity, and insulin release. These results may help to improve the hazard identification of bisphenols.


Assuntos
Receptor beta de Estrogênio , Receptores de Estrogênio , Animais , Compostos Benzidrílicos/toxicidade , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Insulina , Canais Iônicos , Camundongos , Fenóis , Receptores de Estrogênio/genética
16.
Food Chem Toxicol ; 145: 111681, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32805339

RESUMO

Bisphenol-A (BPA) is a widespread endocrine disrupting chemical that constitutes a risk factor for type 2 diabetes mellitus (T2DM). Data from animal and human studies have demonstrated that early exposure to BPA results in adverse metabolic outcomes in adult life. In the present work, we exposed pregnant heterozygous estrogen receptor ß (ERß) knock out (BERKO) mice to 10 µg/kg/day BPA, during days 9-16 of pregnancy, and measured ß-cell mass and proliferation in wildtype (WT) and BERKO male offspring at postnatal day 30. We observed increased pancreatic ß-cell proliferation and mass in WT, yet no effect was produced in BERKO mice. Dispersed islet cells in primary culture treated with 1 nM BPA showed an enhanced pancreatic ß-cell replication rate, which was blunted in pancreatic ß-cells from BERKO mice and mimicked by the selective ERß agonist WAY200070. This increased ß-cell proliferation was found in male adult as well as in neonate pancreatic ß-cells, suggesting that BPA directly impacts ß-cell division at earliest stages of life. These findings strongly indicate that BPA during pregnancy upregulates pancreatic ß-cell division and mass in an ERß-dependent manner. Thus, other natural or artificial chemicals may use this ERß-mediated pathway to promote similar effects.


Assuntos
Compostos Benzidrílicos/toxicidade , Receptor beta de Estrogênio/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Exposição Materna/efeitos adversos , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptor beta de Estrogênio/genética , Feminino , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética
18.
Int J Mol Sci ; 21(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423144

RESUMO

The purpose of this project report is to introduce the European "GOLIATH" project, a new research project which addresses one of the most urgent regulatory needs in the testing of endocrine-disrupting chemicals (EDCs), namely the lack of methods for testing EDCs that disrupt metabolism and metabolic functions. These chemicals collectively referred to as "metabolism disrupting compounds" (MDCs) are natural and anthropogenic chemicals that can promote metabolic changes that can ultimately result in obesity, diabetes, and/or fatty liver in humans. This project report introduces the main approaches of the project and provides a focused review of the evidence of metabolic disruption for selected EDCs. GOLIATH will generate the world's first integrated approach to testing and assessment (IATA) specifically tailored to MDCs. GOLIATH will focus on the main cellular targets of metabolic disruption-hepatocytes, pancreatic endocrine cells, myocytes and adipocytes-and using an adverse outcome pathway (AOP) framework will provide key information on MDC-related mode of action by incorporating multi-omic analyses and translating results from in silico, in vitro, and in vivo models and assays to adverse metabolic health outcomes in humans at real-life exposures. Given the importance of international acceptance of the developed test methods for regulatory use, GOLIATH will link with ongoing initiatives of the Organisation for Economic Development (OECD) for test method (pre-)validation, IATA, and AOP development.


Assuntos
Diabetes Mellitus/epidemiologia , Disruptores Endócrinos/efeitos adversos , Fígado Gorduroso/epidemiologia , Obesidade/epidemiologia , Adipócitos/efeitos dos fármacos , Adipócitos/patologia , Diabetes Mellitus/induzido quimicamente , Diabetes Mellitus/prevenção & controle , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/prevenção & controle , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Obesidade/induzido quimicamente , Obesidade/prevenção & controle , Medição de Risco
19.
Environ Health ; 19(1): 25, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32122363

RESUMO

Food packaging is of high societal value because it conserves and protects food, makes food transportable and conveys information to consumers. It is also relevant for marketing, which is of economic significance. Other types of food contact articles, such as storage containers, processing equipment and filling lines, are also important for food production and food supply. Food contact articles are made up of one or multiple different food contact materials and consist of food contact chemicals. However, food contact chemicals transfer from all types of food contact materials and articles into food and, consequently, are taken up by humans. Here we highlight topics of concern based on scientific findings showing that food contact materials and articles are a relevant exposure pathway for known hazardous substances as well as for a plethora of toxicologically uncharacterized chemicals, both intentionally and non-intentionally added. We describe areas of certainty, like the fact that chemicals migrate from food contact articles into food, and uncertainty, for example unidentified chemicals migrating into food. Current safety assessment of food contact chemicals is ineffective at protecting human health. In addition, society is striving for waste reduction with a focus on food packaging. As a result, solutions are being developed toward reuse, recycling or alternative (non-plastic) materials. However, the critical aspect of chemical safety is often ignored. Developing solutions for improving the safety of food contact chemicals and for tackling the circular economy must include current scientific knowledge. This cannot be done in isolation but must include all relevant experts and stakeholders. Therefore, we provide an overview of areas of concern and related activities that will improve the safety of food contact articles and support a circular economy. Our aim is to initiate a broader discussion involving scientists with relevant expertise but not currently working on food contact materials, and decision makers and influencers addressing single-use food packaging due to environmental concerns. Ultimately, we aim to support science-based decision making in the interest of improving public health. Notably, reducing exposure to hazardous food contact chemicals contributes to the prevention of associated chronic diseases in the human population.


Assuntos
Contaminação de Alimentos/análise , Embalagem de Alimentos/métodos , Substâncias Perigosas/efeitos adversos , Humanos , Plásticos/efeitos adversos
20.
Metabolism ; 102: 153963, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593706

RESUMO

BACKGROUND: Pregnancy represents a major metabolic challenge for the mother, and involves a compensatory response of the pancreatic beta-cell to maintain normoglycemia. However, although pancreatic alpha-cells play a key role in glucose homeostasis and seem to be involved in gestational diabetes, there is no information about their potential adaptations or changes during pregnancy. MATERIAL AND METHODS: Non-pregnant (controls) and pregnant C57BL/6 mice at gestational day 18.5 (G18.5) and their isolated pancreatic islets were used for in vivo and ex vivo studies, respectively. The effect of pregnancy hormones was tested in glucagon-secreting α-TC1.9 cells. Immunohistochemical analysis was performed in pancreatic slices. Glucagon gene expression was monitored by RT-qPCR. Glucagon secretion and plasma hormones were measured by ELISA. RESULTS: Pregnant mice on G18.5 exhibited alpha-cell hypertrophy as well as augmented alpha-cell area and mass. This alpha-cell mass expansion was mainly due to increased proliferation. No changes in alpha-cell apoptosis, ductal neogenesis, or alpha-to-beta transdifferentiation were found compared with controls. Pregnant mice on G18.5 exhibited hypoglucagonemia. Additionally, in vitro glucagon secretion at low glucose levels was decreased in isolated islets from pregnant animals. Glucagon content was also reduced. Experiments in α-TC1.9 cells indicated that, unlike estradiol and progesterone, placental lactogens and prolactin stimulated alpha-cell proliferation. Placental lactogens, prolactin and estradiol also inhibited glucagon release from α-TC1.9 cells at low glucose levels. CONCLUSIONS: The pancreatic alpha-cell in mice undergoes several morphofunctional changes during late pregnancy, which may contribute to proper glucose homeostasis. Gestational hormones are likely involved in these processes.


Assuntos
Adaptação Fisiológica/fisiologia , Idade Gestacional , Células Secretoras de Glucagon/citologia , Células Secretoras de Glucagon/fisiologia , Animais , Contagem de Células , Tamanho Celular , Células Cultivadas , Feminino , Glucagon/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Hormônios Placentários/fisiologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...